
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2009

Synthesis of novel telechelic regioregular
polythiophenes
Robyn Lynn Laskowski
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Chemistry Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Laskowski, Robyn Lynn, "Synthesis of novel telechelic regioregular polythiophenes" (2009). Graduate Theses and Dissertations. 11007.
https://lib.dr.iastate.edu/etd/11007

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11007&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11007&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=lib.dr.iastate.edu%2Fetd%2F11007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11007?utm_source=lib.dr.iastate.edu%2Fetd%2F11007&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Synthesis of novel telechelic regioregular polythiophenes 

by 

 

Robyn L. Laskowski 

 

 

 

 

A thesis submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

 

Major:  Chemistry (Organic Chemistry) 

 

Program of Study Committee: 

Malika Jeffries-EL, Major Professor 

Nicola Pohl 

Zhiqun Lin 

 

 

Iowa State University 

Ames, Iowa 

2009 

 

 

Copyright © Robyn L. Laskowski, 2009.  All rights reserved. 



www.manaraa.com

	   ii	  

Table of Contents 

Chapter 1: Introduction to Conduction Polymers and Polythiophenes 

 Thesis Organization        1 

 Introduction         1 

 Polythiophene         3 

 Poly(3-alkylthiophene)s       4 

 Block Copolymers        10 

 Conclusion         14 

 References         15 

Chapter 2: Living Synthesis of Polythiophenes 

 Introduction         19 

 End-Functionalized Polythiophenes      21 

 Results and Discussion       22 

 Conclusion         31 

 Experimental Methods       32 

 References         34 

Chapter 3: Alkyne End-Functionalized Polythiophenes and “Click” Chemistry 

 Introduction         37 

 Results and Discussion       41 

 Conclusion         62 

 Experimental Method        63 

 References         67 

 



www.manaraa.com

	   1	  

CHAPTER 1:  

Introduction to Conducting Polymers and Polythiophenes 

 

1.1 Thesis Organization 

This thesis is divided into three chapters. Chapter 1 is a general introduction to the 

subject of conjugated polymers. It explains the background information needed to 

understand the chemistry behind polymers, with particular interest shown to poly(3-

alkylthiophene)s. Chapter 2 summarizes the chemistry and synthesis of various alkene 

end-functionalized poly(3-hexylthiophene)s. Chapter 3 covers the synthesis of alkyne end-

functionalized poly(3-hexylthiophene)s, with a major emphasis on “click” chemistry. 

1.2 Introduction   

Almost four decades ago, Hegger, Shirakawa, and MacDiarmid discovered the first 

known polymer capable of being electrically conductive, polyacetylene.1 This 

breakthrough has spawned a dramatic increase of interest in the study of π-conjugated 

polymers (PCPs) for use in a variety of semiconducting applications. The use of 

polyacetylene has been limited due to its poor solubility and air sensitivity that limits its 

potential uses as a semiconductor. However, since the initial discovery a variety of 

different structures have been investigated.  

Since the discovery of the high conductivity of polyacetylene, other PCPs have 

been studied extensively, such as poly(para-phenylene)s (PPP)3, polypyrrole (PPy)4, 

poly(para-phenylene vinylene)s (PPV)5, poly(para-phenylene ethylene)s (PPE)6,  
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polyaniline (PANI)7, and polythiophene (PT)2,  (Figure 21). However, these unsubstituted 

PCPs have strong interactions between the π-electrons, which have a tendency to make 

higher molecular weight polymers insoluble.8 

 

Figure 1: Commonly studied PCPs 

The characteristic vital to conducting polymers is its backbone, comprised of a 

semi-infinite π system that extends throughout the monomer units. This extended system 

allows for directional conductivity along the backbone chain, producing an inherent 

semiconductor (Figure 2).2  

PCPs have several advantages in comparison to their inorganic semiconductor 

counterparts including: a large number of accessible structures, which provides a means to 

tuning their properties and processing via a variety of solution based technologies, which 

reduces processing cost 9. Given these characteristics, PCPs have a mounting interest for 

organic electronic applications, including photovoltaic cells10,11, light-emitting diodes12, 

and field-effect transistors13. 
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Figure 2: Conductivities of various doped conjugated polymers 

1.3 Polythiophene 

 Polythiophene (PT) and its derivatives are among some of the most widely studied 

conjugated polymers. This is due to their the outstanding thermal stability (42% weight 

loss at 900°C), electrical conductivity (3.4 x 10-4 to 1.0 x 10-1 S/cm when doped), and 

environmental stability.14 Polythiophene was first synthesized in the early 1980s via 

metal-catalyzed polycondensation polymerization of 2,5-dibromothiophene or the 

oxidative polymerization of thiophene.15,16 These methods produced polymers that do not 

melt.17 Synthetic studies of the polymerization have been performed, primarily by 

Yamamoto to optimize the reaction18,19, by varying the amounts of magnesium20,  
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solvent19,21, type of catalyst used18-20,22, concentration of same monomer20, type of halogen 

bound to the monomer18,20-23, temperature18,22, reaction time18, and. However, these 

variances only lead to minor improvement in the obtained sample.17 High purity PTs have 

been synthesized using 2,5-diiodothiophene as the monomer. 24 Extensive washing of the 

isolated polymer resulted in a high purity PT, with approximately 50 ppm of Mg and Ni 

remaining in the polymer sample.17 However, the resulting polymer was only soluble in 

anisole, limiting its use. 

1.4 Poly(3-alkylthiophenes) 

 In an effort to surmount the insolubility of PTs, Elsenbaumer synthesized a new 

class of PTs with flexible alkyl side chains, poly(3-alkylthiophene)s (P3ATs) in 1985. 25,26 

Shortly thereafter, other groups reported both chemical and electrochemical preparation of 

P3ATs.27 Introduction of these flexible alkyl chains along the backbone of a previously 

insoluble polymer was found to drastically increase its solubility.28 Similarly, P3ATs with 

alkyl groups larger than butyl can be easily processed from solution or melt, while 

maintaining the overall conductivity of the polymer.27  

PTs developed via Kumada cross-couplings29-32 of Grignard reagent or oxidative 

coupling of thiophenes lead principally to coupling of the thiophene units in the 2 and 5 

positions (Figure 3). PTs synthesized with linkages in the 2 and 5 positions benefit greatly 

by allowing the conjugation of the π-orbitals to extend down the polymer chain and form 

quinoidal type resonance structures when oxidized. This results in dense chain packing 

and extensive  π orbital overlap. While this produces PTs with high conductivities, it also 

causes the PTs to be very insoluble and not easily processible.27  



www.manaraa.com

	   5	  

 

Figure 3: Regioisomeric couplings of 3-alkylthiophenes33 

3-Alkylthiophene is not a symmetric molecule, therefore, poly(3-alkylthiophenes) 

can bond into three different relative orientations (Figure 3). The first coupling linkage of 

the two thiophene rings is a 2,5’ linkage, also known as the head-to-tail coupling (HT).  

The second coupling, known as head-to-head (HH), is 2,2’ coupling. Finally, tail-to-tail 

(TT) is a 5,5’ coupling of the thiophene rings. 27,33 The head-to-head and tail-to-tail 

couplings cause twisting in the thiophene rings, therefore, increasing the torsional angle. 

Consequently, this disruption of the π-conjugation results in loss of conductivity and a 

larger band gap. Polymers with HH and TT couplings have no regiochemical control and 

are then referred to as regioirregular.  

Similarly, regioregular, head-to-tail P3ATs can obtain a low energy planar 

conformation that can self-assemble. This aggregation coerces main-chain conformational 

order as well as supramolecular orientations.14 Richard McCullough studied regioregular 

poly(3-hexylthiophene), rr-P3HT, using X-ray scattering and found the polymer chains 

form a well-defined lamellar structure with an interlaying backbone spacing of 16.0 ± 0.2 

Å (Figure 4) and a π-stacking distance between the thiophenes on the ring of 3.81± 0.2 

Å.14 The inter- and intra-chain conductivity pathways are more efficient for regioregular 
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than regioirregular P3HT, which leads to a highly conductive polymer.27 

 

Figure 4: Self-assembly of regioregular P3ATs17 

1.4.2 Synthesis of Regioregular Poly(3-alkylthiophenes) 

Consequently, P3ATs polymerized via Kumada cross-couplings compared to those 

of previously reported PTs, were found to produce only 50-80% head-to-tail couplings. 

McCullough reported the first synthesis of regioregular head-to-tail coupled P3HT early in 

1992.34,35 This synthetic pathway regiospecifically generates a key intermediate, 2-bromo-

5-(bromomagnesio)-3-alkylthiophene, by selective metal halogen exchange of lithium 

with 2,5-dibromo-3-alkylthiophene. This intermediate is polymerized with catalytic 

amounts of Ni(dppp)Cl2 , using Kumada cross-coupling methods to give P3ATs with 98-

100% HT-HT couplings (Scheme1).17  
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Scheme 1: Typical methods for the synthesis of regioregular P3ATs33 

Shortly thereafter, Rieke also proposed a synthesis of HT-P3AT using a similar 

coupling approach that differs primarily in the organometallic intermediate formed.36,37 

2,5-Dibromo-3-alkylthiophenes are treated with Rieke Zinc38, Zn*, a highly reactive 

metal. This reaction produces a mixture of isomers—2-bromo-3-alkyl-5-

(bromozincio)thiophene and 2-(bromozincio)-3-alkyl-5-bromothiophene. Cryogenic 

temperatures are a necessity, however, as the ratio of isomers varies with specific reaction 

temperatures. The use of Ni(dppp)Cl2  yields regioregular HT-P3AT, whereas palladium 

cross-coupling using Pd(PPh3)4 yields a regiorandom polymer (Scheme 1).  

In 1999, the Grignard metathesis, or GRIM, method was first reported.40,43,44 This 

method eliminated the need to use cryogenic temperatures and reactive metals.  2,5-

dibromo-3-alkylthiopene was treated with one equivalent of a Grignard reagent to yield 
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both 2-bromo-5-(bromomagnesio)-3-alkylthiophene and 2-(bromomagnesio)-5-bromo-2-

alkylthiophene in an 85:15 ratio, regardless of reaction time, temperature, and Grignard 

reagent used. Ni(dppp)Cl2 was once again used as the catalyst to yield regioregular P3ATs 

(Scheme 1). 

Additionally, work was also done by using palladium-catalyzed approaches to 

synthesizing P3ATs. Iraqi et. al. used Stille39 type palladium-catalyzed cross-couplings to 

synthesize P3ATs with 3-hexyl-2-iodo-5-(tri-n-butylstannyl)thiophene as a stable, 

isolatable  intermediate.40 This monomer is then purified prior to polymerization. 

However, some of the tri-butyl tin groups can potentially be cleaved. Separation of the tin 

and iodo end functionalized polymers is possible, allowing for additional reactions to be 

available (Scheme 1).  In another example, Guillerez41 used palladium-catalyzed Suzuki42 

type cross-couplings to synthesize P3ATs. 2-iodo-3-octylthiophene was treated with 

trimethylborate to generate the boronic acid, and then converted to the boronic ester.  

Polymerization was achieved by coupling the ester on itself. Its compatibility with a larger 

array of functional groups provided an alternative to the Rieke and McCullough methods 

(Scheme 1).  

 There are advantages and disadvantages to the methods discussed above. The 

Rieke method is capable of tolerating a wide array of different functional groups because 

it utilizes organozinc reagents, unlike the McCullough and GRIM methods that limit the 

functionality because the groups must be stable to organolithium and organmagnesium. 

The GRIM method allows for polymerization to be completed at room temperature or at 

reflux. Given the ease of polymerization, the GRIM method is widely utilized.  
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1.4.3 Side-Chain Functionalized Polythiophenes 

 The original purpose for the introduction of various side chains on PT was to 

improve solubility and processability. Through this process, numerous other 

functionalized side chains were then studied to fine-tune the properties of the polymer or 

potentially manipulate the polymer for use in a sensor (Table 1).  

Electron-donating groups that contain heteroatom such as alkoxy or alkyl thio 

groups, placed in the 3 position are shown to decrease the band gap by raising the level of 

the HOMO levels, leading to low oxidation potential and a stable conducting state. 

Poly(3,4-ethylenedioxythiophene), PEDOT, is arguably the most widely studied alkoxy 

substituted PT. P3ATs containing ester groups and other carbonyl containing electron-

withdrawing groups were also synthesized, but were found to increase the band gap.45  

Once polymerization is complete, functionalization at the gamma position can 

further tune the properties of the polymer to those desired. This has been predominantly 

achieved by using protecting groups at the end of the side chains, which allow utilization 

of functional groups that may not withstand polymerization conditions.  

Tetrahydropyranyl, trimethylsilyl, phosphonic esters, and bromohexyl side chains have all 

been employed in previous works.45 
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Table 1: Summary of Side-Chain Functionalized PATs46 

 

1.5 Block Copolymers 

 Polymers are large macromolecules consisting of many monomers that are 

covalently linked together to form long, linear chains. In the simplest case, all the 

monomers are the same resulting a homopolymer.45 At the next level of complexity, a 

polymer can be comprised of two (or more) different monomers, designated as  "A" and 

"B" in Figure 1. The monomers can be linked together in a random sequence, resulting in 

a random copolymer. Alternatively, the monomers can be arranged in blocks, resulting in 

a block copolymer. Block copolymers may have two, three, or more blocks. Such 

polymers are known as diblock copolymers, triblock copolymers, etc. (Figure 5).  
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Figure 5: Variations of Different Block Copolymers 

 

Block copolymers have four factors that determine the phase behavior: the 

molecular architecture (linear vs. branched vs. star), choice of monomer, composition, and 

the degree of polymerization.47,48 The molecular architecture directly correlates to the 

morphology of the polymer and can also affect other physical properties. The monomers 

are selected when looking at the interactions between both the A blocks and the B blocks. 

Interactions between the different blocks tend to favor structures where similar blocks of 

the block copolymers cluster near each other. Thus, a polymer melt consisting of AB 

block copolymers will tend to organize itself in a way so that the A-blocks from different 

copolymer chains are near each other, the B-blocks are near each other, and the A and B 

blocks are as far away from each other as possible, consistent with the constraint that the 

A and B blocks of each individual copolymer are covalently linked together. This 

organization of the A and B blocks into different domains is referred to as microphase 

separation. The chemical differences between the A and B blocks need not be large. 

Composition then refers to the volume fraction of each constituent (A and B) in the block 
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copolymer. The degree of polymerization relates to the number of monomer units in each 

of the individual blocks.  

The three classes of block copolymers that were mentioned previously are the 

most commonly studied (Figure 6). Linear block copolymers (A) are composed of two or 

more different linear polymers. Branched block copolymers (B) have one or more 

branching points that lead to an irregular structure. Star block copolymers (C) have linear 

polymers attached to a central core. These polymers are the best defined of the three 

because preparation can be done with specific composition with low molecular weights.47 

A:

B:
C:

 

Figure 6: A) Linear B) Branched C) Star Block Copolymers 

	  

1.5.2 Rod-Coil Block Copolymers 

 Most polymers can adopt a coil conformation in solution that is very flexible, 

however, there is another subclass of polymers that are rigid and stiff due to their 

structure. Rod-coil block copolymers are a polymeric system wherein one of the polymer 

blocks is in a permanent rod conformation in solution that has significant stiffness 

compared to the flexible coil block.49 The stiffness of the rod portion of the rod-coil block 

copolymer typically forces the polymer into an organized, stacked, macromolecular 
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assembly. As a result, rod-coil block copolymers form very ordered structures due to the 

flexibility differences between the blocks even at low molecular weights, which can form 

even on the scale of several nanometers.50,51  

 

Figure 7: Synthetic Routes for Block Copolymers 

	  

Two approaches to synthesizing rod-coil block copolymers are commonly 

employed: the “graft from” and “graft to” methods, as seen above in Figure 7. The “graft 

from” approach utilizes an end-group functionalized homopolymer, commonly referred to 

as a macroinitiator. Polymerization of the second block is initiated from the 

macroinitiator. Addition of the second monomer unit followed by successive 

polymerization yields the resulting diblock copolymer. The “graft to” approach requires 
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the synthesis of two homopolymers that have functionalized end groups that can be 

coupled together. Both the “graft from” and “graft to” approaches has been used to create 

rod-coil block copolymers where one or both of the blocks is a conjugated polymer. This 

approach has been very successful in synthesis of polyphenylene-vinylene-b-

polyisoprene51 and polystyrene-b-polyphenylene vinylene52 block copolymers, while the 

“graft from” approach has produced polyphenylene-vinylene-b-fullerene52, polythiophene-

b-perylene diimide53, poly(3-hexylthiophene)-b-fullerene54, and poly(3-hexylthiophene)-

b-poly(perylene bisimide acrylate)55, and poly(3-hexylthiophene)-b-poly(acrylate) block 

copolymers.56  

The graft from approach has been quite limited by the ability to synthesize 

conjugated polymers with functionalized end groups. The “graft to” approach has an 

advantage of allowing for greater control of the PDI since each homopolymer’s PDI is 

predetermined prior to coupling each of the blocks together. However this “graft from” 

approach offers the advantage of versatility and compatibility with a number of techniques 

such as ATRP, RAFT, and anionic polymerizations.  

1.6 Conclusion 

The “graft to” approach that was previously mentioned has also been successfully 

used to graft vinyl-terminated P3HT to quantum dot surfaces by work done in 

collaboration with our group. It was hypothesized that these conducting polymer-quantum 

dot nanocomposites would facilitate an electronic interaction that could be utilized for 

assembling one-layer solar cells.60 Therefore, the goal of this research was to synthesize 

various end-functionalized regioregular polythiophenes to utilize the “graft to” and “graft 
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from” methods to synthesize diblock copolymers that could be used make other 

nanocomposite materials.  
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CHAPTER 2:  

Living Synthesis of Polythiophenes 

 

2.1 Introduction: Mechanism of the Nickel-Catalyzed Cross-Coupling Reaction 

 As mentioned in the previous chapter, regioregular P3ATs can be functionalized in 

a variety of ways. End-functionalized P3ATs have been easily synthesized using the 

GRIM method, as first mentioned in 2004.1 This chapter will detail a variety of syntheses 

of alkene end-functionalized P3ATs.  

The exact mechanism for metal-catalyzed cross-coupling polymerizations was not 

completely understood until recently.2 Originally, it was believed polymerization occurred 

via a step-growth mechanism because nickel-catalyzed dehalogenative polymerizations 

are technically viewed as a polycondensation reaction. Within the past few years, it has 

been proposed that the mechanism actually proceeds via a chain-growth mechanism, 

instead of the accepted step-growth mechanism. The chain-growth mechanism is 

considered to be a quasi-living system and allows for narrower molecular weight 

distributions.   

Yokozawa3 presented studies that provided evidence that the chain-growth 

mechanism was probable by showing the molecular weight, Mn, values increased 

proportionately to the conversion of the monomer. This suggested an initiator species 

propagates the polymerization.3,4 Yokozawa explained that the oxidative addition of the 

polymer could occur selectively because it is kinetically faster or thermodynamically more 
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stable than the oxidative addition to the monomer, given the decrease in electron density 

on the thiophene ring in a polymer chain.5  

Independently, McCullough also showed that the mechanism is chain growth and 

the degree of polymerization of P3AT increases with monomer conversion. This can be 

predicted by the molar ratio of nickel catalyst to the monomer.6,7 The proposed 

mechanism was verified using the two different monomers found in both the McCullough 

and GRIM methods.  It was proposed that the polymer chain and the metal catalyst exist 

as an associative pair via formation of a π-complex, restricting polymerization to one end 

of the polymer chain.8,9 The proposed mechanism is shown below in Scheme 1.  

 

Scheme 1: Proposed mechanism for the nickel initiated cross-coupling polymerization8,10 
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	   Understanding the mechanism of these living polymerizations is critical to 

understand and facilitate in the control of not only the molecular weights of the system, 

but also in control of the possible end-group modifications. 

2.2 End Functionalized Polythiophenes 

 Side chain functionalization11 of PTs has been the major focus of studies, since the 

late 1980s, while end group functionalization is a somewhat more recent development 

field within the realm of PTs that constitutes approximately only 10% of the research 

completed. Two approaches of modification have been used routinely—in situ method 

and postpolymerization method. Janssen first utilized the in situ method combining it with 

the McCullough method of polymerization, but it gave a mixture of HH terminated PT 

and mono- and dicapped polymers.12   

McCullough also reported an alternative pathway using the GRIM method.10,13 As 

mentioned previously, the GRIM method of polymerization follows a living mechanism. 

In this pathway, the nickel catalyst is still affixed to the P3AT. Therefore, addition of 

another Grignard reagent will terminate the polymerization reaction and end cap the 

polymer. Addition of allyl, vinyl, or ethynyl Grignards will result in a mono-capped 

polymer, while alkyl or aryl Grignards will result in a dicapped polymer (Scheme 2). A 

major advantage of the in-situ method is that P3ATs can obtain a higher degree of 

functionality in one step that is highly versatile and efficient.  
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Scheme 2: End-Functionalization of P3ATs8,10,14 

The postpolymerization method uses the H and Br terminal groups of P3ATs as a 

branch to further extend the synthesis and bring forth new functionality. Additional 

thiophene-based end groups can be added to the bromine end P3ATs15, while conversion 

to a H/H terminated polymer has allowed for subsequent transformation to aldehydes.2  

2.3 Results and Discussion 

2.3.2 Synthesis Alkene End-Functionalized P3HTs 

Both the vinyl (1) and allyl (2) terminated poly(3-hexylthiophene)s were 

synthesized using known literature procedures (Scheme 3)16. This was done not only to 

become familiar with GRIM polymerization techniques, but also to synthesize end-

functionalized polymers that could also be modified post-polymerization to expand their 

uses. Each of the polymers were analyzed via gel permeation chromatography (GPC) and 
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matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF 

MS). GPC uses size-exclusion chromatography to determine the molecular weight (Mn) 

and PDI. MALDI-TOF is utilized to determine the end-group functionalization of P3ATs 

and Mn. This method is used because of its ability to ionize and analyze macromolecules 

with limited fragmentation within the mass spectrometer. Terthiophene has been 

recognized previously to be the best matrix to use with P3ATs15. Generally, the end-group 

constitution of the polythiophene can be determined using the following equation: 

166.2n + EG1+ EG2                     (1) 

where 166.2 is the molecular weight of 3-hexylthiophene, n is the number of repeat units 

in the polymer, EG1 and EG2 are the molecular weights of the corresponding end groups. 

This calculates the projected molecular weights of the polymer within ±5 Da, which is due 

in part to isotope effects.17  
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Br

1. t-butylMgCl
2. Ni(dppp)Cl2
3. VinylMgBr
THF SBr

C6H13

n

SBr

C6H13

Br

1. t-butylMgCl
2. Ni(dppp)Cl2
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THF SBr

C6H13

n

1

2  

Scheme 3: Synthesis of vinyl and allyl-terminated P3HTs 

	  

Through analysis of both the vinyl and the allyl-terminated P3HTs, it was 

determined that the vinyl-terminated P3HT had a higher percentage of H/vinyl terminated 
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and H/H terminated P3HT, resulting in higher PDIs than the allyl-terminated (Figures 1 

and 2). Only the allyl-terminated P3HT was used in the following efforts to try and 

minimize the number of possible defects that could possibly form. 

 

Figure 1: MALDI-TOF of Vinyl-Terminated P3HT 

 

Figure 2: MALDI-TOF of Allyl-Terminated P3HT 
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While becoming accustomed to polymerization syntheses, it was found that using 

the GRIM method one could control the molecular weights of the desired P3HT by 

varying the amount of Ni(dppp)Cl2 used in the polymerization (Figure 3). Using this 

process, varying molecular weights of allyl-terminated P3HT. 

               

Figure 3: Varying Weights of Allyl-terminated P3HT 

 

 A further example of how the molecular weight of a polymer can be controlled 

using this process is given. A targeted, low molecular weight sample of rr-P3HT (13.5K) 

was given to the Lin group to study the self-assembly of regioregular conjugated 

polymers. rr-P3HT was a desirable material for this because it is soluble in many organic 

solvents and has excellent film-forming properties that have made it a good material for 

use as a printable conjugated polymer.18 Also, the interchain π-π stacking of P3HTs would 

facilitate the formation of regular, controllable spacing that has been lacking in previous 

attempts at using evaporative self-assembly. It was found that when a doing controlled 

evaporation on an axially symmetric sphere, microscopic “snake-skin” like patterns 
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formed ellipsoids that contained bundles of P3HT nanofibers that formed from the strong 

intermolecular interactions of the P3HT polymer chains. This could have potential for 

creating highly useful materials and devices for applications in biosensors, photonics, and 

optoelectonics.19 Further collaborations with the Lin group are currently being explored.  

2.2.3 Thiol-Ene Coupling 

 As previously stated, allyl-terminated P3HTs are easily synthesized with little 

degradation and side products (H vs. Br/allyl terminated, H/Br terminated, etc.) (Figure 2 

and 4).  

 

Figure 4: GPC of Allyl-Terminated P3HT 

 

 Given that the allyl-terminated polymer can be synthesized cleanly, it was believed 

that thiol-ene couplings could provide an easily accessible route to producing thiol 

containing end-functionalized polymers. These thiol containing end-functionalized P3ATs 
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could be utilized to produce “graft from” diblock copolymers by initalizing RAFT 

polymerizations from the end group. Thiol-ene coupling is a radical-based reaction 

between an alkene and a thiol that offers versatility through the incorporation of cross-

linkers that also eases the photocurring in the presence of oxygen.20,21 The cross-linking 

can be initiated either thermally or photochemically.22,23 Inhibition by oxygen is not seen 

within the thiol-ene systems that are typically associated with other radical-based systems.  

It was proposed that developing thiol-end-functionalized P3HTs would open the 

possibility then using RAFT polymerization to synthesize a diblock copolymer. 

 Using the easily synthesized allyl-terminated P3HTs, several thiol-ene coupling 

reactions were attempted using a few different initiators at different wavelengths (Table 2 

and Scheme 4).  

Table 2: Attempts at Thiol-Ene Coupling Reactions 
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Scheme 4: Thiol-ene Reactions 

 

 Allyl-terminated P3HTs were initially reacted with pentane-2-thiol thermally and 

photochemically using azobis(isobutylnitroxide)(AIBN) and 2,2,6,6-

tetramethylpiperidine-1-oxyl (TEMPO) as the initiators at the stated wavelengths. 

However, analysis by MALDI-TOF proved that at best there was possibly only 10% 

conversion to the thiol end-fucntionalized P3HT. The thiol was then changed to 1-

thiolglycerol because it would allow for further functionalization of the hydroxy groups if 

the thiol-ene reactions were completed. The reactions were then attempted with AIBN, 

TEMPO, and 2,2-dimethoxy-2-phenylacetophenone (DMPA), as the latter initiator was 

successful in the synthesis of fourth-generation dendrimers.24 Nonetheless, once again 

these reactions did not produce any thiol containing end-functionalized P3HTs. It is 

hypothesized that changing the thiol once again to one that contains a carbonyl group 

alpha to the thiol would make the reaction more electronically favorable.  

2.2.4 Synthesis of Other End-Functionalized P3ATs 

 Allyl-terminated poly(3-decylthiophene) (P3DT) was desired to study the effects 

of different alkyl chains on the glass transition temperature (Tg). The decyl Grignard 

reagent was made using commercially available magnesium turnings and 1-bromodecane 

(4) (Scheme 5). The monomer (6) was then made by dibromination of the thiophene ring, 
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and the standard GRIM method was used to result in the allyl end-functionalized P3DT. 

Upon examination of the MALDI-TOF spectrum, it was found several times that the 

major product synthesized was H/Br terminated P3DT rather than the expected allyl-

terminated.  

C10H21Br  Mg
diethyl ether C10H21MgBr

4

S

Br 1. Ni(dppp)Cl
2.16
diethyl ether, 
reflux overnight S

C10H21
NBS
THF

S

C10H21

Br Br

1. t-BuMgCl
2. Ni(dppp)Cl2
3. AllylMgBr
THF SBr

C10H21

n

5 6 7  

Scheme 5: Synthesis of P3DT 

	  

Numerous attempts were made at this synthesis with each one producing the same 

result. It was determined that it would be advisable to do a kinetic study of the 

polymerization and determine the effects of having a longer alkyl chain in the 3-position 

has. Several polymerizations were consequently attempted, with aliquots taken at specific 

time intervals to monitor the concentration of 2,5-dibromo-3-decylthiophene by gas 

chromatography-mass spectrometry (GC-MS). However, before complete analysis of the 

polymerization was completed, a kinetics study of this system was published.25 A 

hypothesis was proposed that once the maximum conjugation was reached (which was 

stated as a repeat unit equally ten), electronic delocalization is favored, which would lead 

to decrease the reactivity of the intermediates formed during polymerization.25  

 A few other syntheses were attempted in an effort to increase the variance in the 

end-functionality of P3HTs. The hydroxypropyl-terminated P3HT (8) was toslyated using 
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p-toluenesulfonyl chloride to convert the hydroxyl group into a much better leaving group 

to proceed with an SN2 reaction with sodium azide to produce an azidopropane-terminated 

P3HT (Scheme 6). Unlike other end-functionalized P3HT, using MALDI-TOF for 

analysis of an oxygen containing end-functionalization is difficult.  A 1H-NMR was 

obtained, however, there was no clear distinction that the azide was made, as the 

disappearance of the hydroxyl-proton was not clearly seen. 

SBr

C6H13

n
OH

1. p-TsCl
2. NaN3
THF SBr

C6H13

n
N3

98  

Scheme 6: Attempted Synthesis of an Azide-Terminated P3HT26 

	  

 Lastly, the hydoxypropyl-terminated P3HT was also treated with sodium hydride 

to form the alkoxide anion. This was reacted further with propargyl bromide to construct a 

propargyl propyl ether (10, Scheme 7). Again, MALDI-TOF spectrum was difficult to 

obtain. A 1H-NMR was also obtained, however, it would appear that the polymer had a 

large value of repeat units, so the peak correlated to the end-groups were very difficult to 

differentiate. Analysis using a 500 MHz 1H-NMR is currently pending.  

SBr

C6H13

n
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Scheme 7: Attempted Synthesis of Propargyl Propyl Ether End-Functionalized P3HT27 

 



www.manaraa.com

	   31	  

2.3 Conclusions 

 The ability to mono-cap P3ATs with various functional groups efficiently using 

Grignard reagents has opened the possibility of synthesizing an abundance of new 

materials given the ability of alkene and alkyne terminated polymers to be used as 

building blocks in the synthesis of diblock copolymers.10 Alkene end-functionalized 

P3HTs, namely vinyl and allyl, were synthesized with success. Allyl-terminated P3HTs 

were utilized for further synthesis more often because if its ability to be synthesized 

cleanly. Thiol-ene coupling reactions were first attempted using a small variety of 

conditions and several thiols to determine if these systems would be useful to produce 

“graft from” diblock copolymers. However, there was no success using the 

aforementioned conditions and the allyl-terminated P3HT. Other synthetic modifications 

were also attempted, but the isolated polymer products were difficult to separate to 

confirm if the reactions were completed as hypothesized.  Overall, while limited 

accomplishments were made, there are still vast possibilities for synthesis of novel diblock 

copolymers containing alkene end-functionalized P3HTs. 

2.4 Experimental Methods 

All reactions, when specified, were preformed under purified nitrogen or argon, 

using oven-dried glassware.  Tetrahydrofuran (THF) was dried using an Innovative 

Technologies purification system. tert-Butylmagnesium cloride, vinylmagnesium 

bromide, allylmagnesium bromide, Ni(dppp)Cl2, pentane-2-thiol, 1-thioglycerol, borane in 

THF complex, 30% hydrogen peroxide, AIBN, TEMPO, DMPA, 1-bromodecane, 

magnesium turnings, para-toluenesulfonyl chloride, sodium azide, sodium hydride, 
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propargyl bromide and diethyl ether were purchased from Aldrich Chemical Co. and used 

without further purification. N-Bromosuccinimide was purchased from Aldrich Chemical 

Co. and recrystalized prior to use. 2,5-dibromo-3-hexylthiophene was synthesized 

according to the literature procedures from 3-hexylthiophene.28 rr-P3HT, allyl and vinyl-

terminated poly(3-hexylthiophene) and allyl-terminated poly(3-decylthiophene) were 

prepared according to literature procedures.1   

Instrumentation.   

1H NMR spectra were recorded using a Varian 400 MHz instrument.  A MALDI-

TOF MS (Voyager-DE STR BioSpectrometry) workstation by Biosystems was used to 

record spectra in the linear mode, where samples were irradiated under high vacuum using 

a nitrogen laser (wavelength 337 nm, 2ns pulse).  The accelerating voltage was 20 kV, and 

the grid voltage and low mass gate were 92.0% and 1000.0 Da., respectively. The matrix 

used for all samples was 2,2’: 5,2”-Terthiophene (Aldrich).  GPC measurements were 

carried out on a Viscotek GPC Max 280 separation module equipped with two 5µm I-gel 

columns connected in series (guard, HMW and LMW) with a variable λ absorbance UV 

detector, online viscometer, and refractive index detector.  Analyses were performed at 30 

30 °C using THF as the eluent and the flow rate was 1.0µL/min.  Calibration was based on 

polystyrene standards obtained from Viscotek. A Rayonet mini-reactor was used 

containing 8 broadly emitting 4 Watt bulbs centered around 256 and 350 nm. 

Attempted Thiol-Ene “Click” Reactions: To a 100 mL reaction vial, 0.15 mmol of 

allyl-terminated poly(3-hexylthiophene), 0.025mmol of initiator, 0.040mmol of thiol, 

45mL of THF were added.  The vial was capped and stirred at specified wavelengths and 

temperatures for the specified amount of time (Table 2).  The reaction mixture was then 
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precipitated into methanol and filtered through a cellulose thimble. Soxhelt extraction was 

performed using hexanes and chloroform.  

 Hydroxypropyl-Terminated Poly(3-hexylthiophene)29 The literature procedure was 

followed except a borane-tetrahydrofuran complex (BH3 in THF) was used instead of 9-

BBN. 

Attempted Azide-End-Functionalized Poly(3-hexylthiophene)26: To a 100 mL round 

bottom flask, 0.15 mmol of hydroxypropyl-terminated poly(3-hexylthiophene), 

0.050mmol of para-toluenesulfonyl chloride, and 70mL of THF were added.  The round 

bottom was capped and stirred under argon at r.t. overnight. 0.080mmol of sodium azide 

was then added, the mixture was heated to 50 degrees and left to react overnight.  The 

reaction mixture was then precipitated into methanol and filtered through a cellulose 

thimble. Soxhelt extraction was performed using hexanes and chloroform. 

Attempted Propargyl Propyl Ether End-Functionalized Poly(3-hexylthiophene)26: To 

a 50 mL round bottom flask, 0.20 mmol of hydroxypropyl-terminated poly(3-

hexylthiophene) in 30mL of THF was cooled to 0ºC for 20 minutes prior to the addition of 

0.35mmol of sodium hydride. The mixture was stirred for 3 hours between 0-5ºC. 

0.45mmol of propargyl bromide was then added slowly via syringe while assuring the 

temperature did rise above 5ºC for the next 30mins. The reaction was then warmed to r.t. 

and reacted for 6 hours. The reaction mixture was then precipitated into methanol and 

filtered through a cellulose thimble. Soxhelt extraction was performed using hexanes and 

chloroform. 
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CHAPTER 3:   

Alkyne End-Functionalized Polythiophenes and “Click” Chemistry 

 

3.1 Introduction: Background of “Click” Chemistry 

 One problem associated with the synthesis of end-group functionalized 

regioregular poly(3-alkylthiophene)s (P3ATs) is the difficulties associated of separating 

the polymers with functionalized end-groups from the unfunctionalized polymers. This 

hinders its use to form block copolymers. The use of high yielding reactions with minimal 

side products is beneficial. Given these specifications, “click” chemistry is seen as an 

ideal approach. “Click” chemistry is a chemical philosophy first introduced by Sharpless 

in 2001.1 It was founded by naturally occurring processes that produce substances quickly 

and unfailingly by combining smaller units together.  These “click” chemistry reactions 

must meet the several criteria. The reactions must proceed in high yields, tolerate a wide 

array of functional groups, present inoffensive by-products, be purified by non-

chromatographic techniques, have simple reaction conditions that are not affected by 

water or oxygen, and the solvent used in the reaction must be easily removed.1  

 One reaction that has seen major resurgence since the idea of “click” reactions was 

founded is the Huisgen 1,3-dipolar cycloaddition between an alkyne and an azide to form 

a triazole.2 Organic azides are a very selective, but highly energetic, functional group that 

will react with alkynes and quickly rose to be one of the top reactions fulfilling the “click” 

criteria.3 Two isomers are possible with this cycloaddition—the 1,4 (1) and 1,5-

regioisomers (2) (Scheme 1).  A mixture of these isomers will form when the reactions are 
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conducted thermally. However, if copper is used as the catalyst, the 1,4 isomer will 

predominate, where as the 1,5 isomer is the major product when ruthenium is the catalyst. 

The discovery of the copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) 

was accomplished simultaneously by Meldal4 and Sharpless1 in 2002 It was found to be 

one of the most reliable “click” reactions to produce covalent building of complex 

structures.  

 

Scheme 1: 1,3-Dipolar cylcoadditions5 

	  

3.1.2 Copper-Catalyzed Azide-Alkyne Cycloaddition 

 The elementary thermal reaction involving either a terminal or an internal alkyne 

has been known since the end of the 19th century.6 Huisgen and co-workers 

comprehensively studied these reactions during the 1950s through the 1970s.2 It was 

found that this addition has a high kinetic-energy barrier, but is strongly 

thermodynamically favored.  Copper(I) catalysis accelerates the reaction significantly (107 

times faster than an uncatalyzed reaction) and is unaffected by the steric and electronic 

properties of the groups bonded to alkyne and azide, nor is it affected by water and most 

inorganic and organic functional groups.6 The 1,2,3-triazole containing product is highly 
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stable, exhibits a strong dipole moment, has an aromatic character, and is a sufficient 

hydrogen-bond acceptor.2 

 A wide number of copper catalysts have been used in this reaction. Copper(I) salts 

such as CuI or CuBr have been used extensively, but their solubility is limited in organic 

solvents.  Coordination complexes such as [Cu(CH3CN)4]PF6 and [Cu(PPh3)3Br) have 

become widely used to overcome this problem.6 Conversely, Cu(II) is commonly made in 

situ from oxidation of the thermally unstable Cu(I). Cu(II) can promote oxidative alkyne 

coupling reactions, known as Glasier couplings7, deteriorating the probability of 

cycloaddition occurring. Various measures have been implemented in an attempt to 

minimize the copper-catalyzed coupling between the alkynes, such as trying to limit the 

amount of oxygen present in the system or place a sacrificial reducing agent into solution 

(such as copper(II) sulfate pentahydrate). Most commonly, the reaction is carried out with 

CuI in tetrahydrofuran, acetonitrile, dimethyl sulfoxide, or with a CuSO4/ascorbate 

alcohol/water mixuture.8 

 Ligands are not mandatory for the Cu(I) catalyzed triazole formation to occur. 

However, the rate of reaction increases and the copper catalyst is further protected from 

oxidation in the presence of oxygen. Extensive studies have been completed to determine 

what effect specific ligands have on the rate of reaction.5,9,10  

3.1.3 CuAAC Mechanism 

 The role of copper in the formation of triazole has been disputed since its 

discovery in cycloadditions.  Quantum mechanical studies of non-copper catalyzed 

reactions have been completed recently and it was determined that the transition state is 
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mainly nonpolarized, with the alkyne remaining as a poor electrophile.11,12  Azides can 

coordinate with Cu(I) in two different ways.  Most commonly found is end-on 

coordination with a bond angle of 180°, while the other way of coordination has the 

carbon bonded nitrogen and needs another intramolecular partner to form a 120° angle 

between the N-N-Cu bond.8 Various mechanisms have been proposed, but the exact 

mechanism has yet to be determined.6 

3.1.4 Ruthenium-Catalyzed Azide-Alkyne Cycloaddition 

 Folkin, Jia, and co-workers first demonstrated the use of ruthenium(II) catalysts to 

form predominately the 1,5-regioisomer of 1,2,3-triazole in 2005.13 Unlike the CuAAC 

reaction, either the internal or terminal alkynes can participate in the cycloaddition. Initial 

studies found that ruthenium complexes containing Cp or Cp* gave the highest percentage 

of conversion. Additionally, no base is required throughout this system, unlike copper-

catalyzed reactions.  It is hypothesized that the mechanism of this cycloaddition involves a 

six-membered ruthenacycle intermediate, which can undergo reductive elimination to 

produce the 1,5-regioisomer.14,15 The attention given to the ruthenium-catalyzed reaction 

in our study is significantly less than that of the copper-catalyzed because the copper 

catalysts are easily accessible and purified, and are more cost-efficient.  

3.1.5 Summary 

 Since the discovery of the CuAAC process, hundreds of papers have been 

published on the subject with 400 published between 2002-2007 alone.16  “Click” 

chemistry has made a substantial impact in all areas of chemistry by fulfilling the need of 

chemically reliable, covalent bond-forming building blocks. Its range of uses is incredibly 
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diverse—this method is used in various syntheses in biological areas to further 

functionalizations of peptides, natural products, pharmaceuticals, DNA, nucleotides, and 

carbohydrates.6 It also has been introduced in dendrimer and polymer chemistry and has 

become an efficient way for material scientists to synthesize various block, linear, graft, 

comb, star-shaped, gradient, random, and alternating copolymers.5 However, there has not 

been any significant progress utilizing “click” chemistry with end-functionalized PTs. 

3.2 Results and Discussion 

 As mentioned in Chapter 2, the “graft to” approach for synthesizing block 

copolymers is preferred because its control of the polydispersity of the polymer. The goal 

of this research is to use “click” chemistry to synthesize polythiophene containing rod-coil 

block copolymers using the “graft to” method. A schematic representation of this is shown 

in Figure 1. Thus to accomplish this, we needed to synthisize an alkyne terminated 

regioregular P3HT and an azide terminated coil block.  
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Figure	  1: Rod-Coil Block Copolymer 

Bulk synthesis of polystyrene via atom transfer radical polymerization (ATRP) was found 

to work best (Scheme 2).  
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Scheme 2: Synthesis of Azide-Terminated Polystyrene19 
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The molecular weights could be targeted by using the following equation: 

Mnth = Mmonomer [M]0 converstion / [I]0   ,                                               (1) 

where Mmonomer is the molar mass of the monomer (molecular weight of styrene is 104.15 

g/mol), [M]0 is the initial monomer concentration, and [I]0 is the initial initiator 

concentration.18 Various molecular weight polystyrenes were synthesized, ranging from 

3,000 to 10,000D with PDIs between 1.1-1.3 (3) Confirmation of the bromine terminal 

group via MALDI-TOF is difficult due to the lack of ionization. A sample was taken and 

reacted with tributyl phophine, to yield a tributyl phosphine terminated polystyrene, which 

is easily ionized via MALDI-TOF (Figure 2). The bromine-terminated polystyrene was 

then reacted with azido trimethylsilyl overnight to yield an azide-terminated polymer 

capable to be used in “click” reactions (Figure 3).19 

 

 

Figure 2: MALDI-TOF spectrum of tributylphosphine-terminated polystyrene20 
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Figure 3: GPC of 4 

	  

The protocols for the synthesis of alkyne terminated rr-P3AT bearing groups was 

reported previously by Mitchell et. al. 17 and is shown in Scheme 3. The procedure easily 

yielded the ethynyl (5) and propargyl-terminated P3HTs (6) target polymers and their 

structures were verified via 1H-NMR and MALDI-TOF. First the “click” reaction between 

ethynyl P3HT and benzyl azide was performed by using CuBr(PPh3)3 as the catalyst and 

diisopropylethylamine, DIPEA, as the base (Scheme 4).  
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Scheme 3: Ethynyl and Propargyl-Terminated P3HT17 
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Scheme 4: Click Model Reaction17 

 

“Click” reactions between the ethynyl-terminated P3HT and the azide-terminated 

polystyrene were carried out using CuBr and N,N,N’,N”,N’-pentamethylethylenetriamine, 

(PMDETA) as the base (Scheme 5). The reactions were monitored via GPC at 456 nm to 

monitor the molecular weight change of the P3HT (Figure 4). 
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Scheme 5: “Click” reaction between P3HT and Polystyrene 

	  

As Figure 4 shows, the GPCs of the reaction taken at various time points almost 

appear bimodal in nature. Given the starting molecular weights of the polystyrene 

(10,500) and the P3HT (12,700) used, and comparing the peaks observed on the GPC, it 

was believed that the “click” reaction (24,000) were not progressing towards completion, 

resulting in a mixture of unreacted ethynyl-terminated P3HT and “clicked” diblock 

copolymer.  

 

Figure 4: GPC data of ethynyl P3HT and azide terminated polystyrene “Click” Reactions 
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Numerous papers utilizing alternative “click” conditions have been published since 

2008.6 Therefore, it was determined that a ligand study using various bases that were 

successfully used with other polymeric systems would be beneficial to determine the best 

ligand to use for our systems (Figure 5). The conditions of the study are shown below in 

Table 1, with the reactions monitored again via GPC (Figures 6-8).	  

 

Figure 5: Ligands and additional catalyst used in the ligand investigation 

	  

	  

Table 1: Initial “Click” Ligand Study 
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Figure 6: GPC of model reactions after 1 hour at r.t. 

	  

     

Figure 7: GPC of model reactions after 8 hours at r.t 
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Figure 8: GPC of model reactions after 40 hours at r.t. 

 

 Comparing the progress of all reactions shown in Figures 6-8 to those of the initial 

reaction in Figure 4, it was once again believed the “click” reactions were hindered from 

completion by an unknown source.  

 Concurrent work published by Dubois cited that block copolymers were 

synthesized using the combination of ATRP and “click” chemistry.21 2-(2-

Azidoethoxy)ethylbromoisobutyrate (9) was synthesized to be used two ways—a 

macroinitiator (MI) to synthesize an azide-terminated polystyrene in one step prior to a 

“click” reaction or conversely, a “click” reaction prior to utilizing ATRP to synthesize the 

other block. This versatile compound was deemed logical to develop to continue this 

project (Scheme 6). 
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Scheme 6: Incorporation of the MI to synthesize diblock copolymers21 

	  

 The MI was synthesized via published procedures21 and a “click” reaction was 

attempted. Upon analysis by GPC, an expected result was obtained. As shown in Figure 9, 

the GPC of the attempted reaction was astonishingly similar to those obtained from the 

previous “click” reactions. Given the molecular weight of the MI is only 188.02 g/mol, the 

molecular weight of the “clicked” polymer should not shift to be double of the starting 

ethynyl-terminated P3HT because the difference in molecular weight would be negligible.  
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Figure 9: GPC of attempted reaction to make 11 

	  

 After work up of this attempted “click” reaction, the P3HT used was isolated and 

analysis via MALDI-TOF was completed (Figure 10). The spectrum provided insight to 

why the previously attempted “click” reactions did not work as expected. It was found that 

instead of performing a “click” reaction, the ethynyl-terminated P3HT was homocoupling 

to itself via Glaser couplings22 to obtain a diacetylene. This gave valuable insight to the 

doubling of molecular weights observed in the previous figures (Figures 6-8), as well as 

the pronounced starting polymer peak. Recent publications also provided reasonable 

explanations of this occurrence. It was found that the Huisgen-type “click” reactions and 

Glaser-type couplings occur under very similar conditions.7,10 It is believed that the 

conjugation of the ethynyl group on the polythiophene system led to deactivation of the 

alkyne, severely limiting the cycloaddition pathway and ultimately giving way to 
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homocoupling.23 To circumvent this problem, it is believed that using a propargyl-

terminated P3HT, a less conjugated system, or a protected alkyne-terminated P3HT will 

limit the potential homocoupling that was previously observed.  

 

Figure 10: MALDI-TOF of ethynyl-P3HT post attempted “click” reactions 

 

 After examining commercially available starting materials, a protected propargyl 

system was proposed, as shown in Scheme 7. Activated Rieke magnesium (Mg*), 

prepared by reducing anhydrous magnesium chloride using lithium and naphthalene24, 

was used instead of the conventional Grignard magnesium because it does not contain 

trace impurities that could potentially decrease the yields of the end-capping reactions. 

Polymerization was completed using the 3-magnesium-bromo-1-trimethylsilyl-1-propyne 
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(12) as the Grignard reagent added to end-cap the P3HT. This approach was successful in 

preparing predominately Br/propargyl-TMS terminated P3HT. This produced a much 

cleaner alkyne-terminated P3HT, as measured by the GPC in Figure 11.  

	  

Scheme	  7: Synthesis of TMS-propargyl P3HT 

 

 

 

Figure 11: Propargyl vs. Ethynyl Terminated P3HT GPCs 
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After deprotection of the TMS-propargyl P3HT by using tert-butylammonium 

fluoride (TBAF), another series of “click” reactions were attempted with the azide-

terminated MI and the azide terminated polystyrene using the CuBr/PMEDTA system 

again. None of these reactions produced any triazole products, however, no Glaser-type 

homocouplings were observed in the reaction.  

Some difficulties were encountered during the reproduction of a successful end-

capping reaction with both the propargyl- and ethynyl-terminated P3HT using Rieke Mg*.  

The reaction using the same conditions continually gave different results without clear 

rationale.  It was hypothesized that water may have been a contaminant, thus lowering the 

reactivity of the MgCl2. However, transferring newly purchased MgCl2 to a reaction vial 

in a glove box, and attempting to make the Grignard reagent using Rieke Mg* still gave 

sporadic end-fuctionalization of the polymer. Subsequently, Mg* was purchased from 

Rieke Metals, Inc. (Lincoln, NE) to try to eliminate any possible contaminants. This 

method worked better than synthesizing the Mg*, but only slightly. Finally, we obtained a 

custom synthesized 3-magnesium-bromo-1-trimethylsilyl-1-propyne (9) from Novel 

Chemical Solutions, INC. (Crete, NE), which greatly improved the results of the 

polymerizations. Br/progargyl-TMS terminated P3HT was made very cleanly with good 

molecular weights (4-7K) and low PDIs (1.1-1.25) and was easily deprotected using tert-

butylammonium fluoride (Figure 12). 
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Figure	  12:	  MALDI-‐TOF	  of	  a	  Propargyl-‐Terminated	  P3HT	  

	  

By completing this synthesis of the propargyl-terminated P3HT, it was believed 

the complications of the previous “click” reactions would be circumvented.  The “click” 

reaction shown in Scheme 5 was attempted once again. Unfortunately, analysis by 

MALDI-TOF proved that no reaction occurred once again.  We also attempted to use a 

CuI/DIPEA catalytic system, which has been shown useful to obtain the 1,4-isomer when 

attempting “click” reactions in organic solvents, in recent literature.5 This catalytic system 

was used again to try the “click” reactions between the azide-terminated polystrene, 

benzyl azide, and the propargyl-P3HT. However, this more favorable system did not result 

in a “click” reaction. Finally, we attemped a series of model reactions with various azides 

and using both copper and ruthenium catalysts would be advantageous (Table 2). 
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Table 2: “Click” Model Reactions 

 

MALDI-TOF spectrum of these reactions showed no evidence of a “click” 

reaction occurring. Hawker and co-workers published a paper stating the use of various 

copper and ruthenium catalysts used in “click” reactions to make vinyl monomers 

containing 1,2,3-triazoles.25 One of the catalysts reported was a homogeneous copper on 

carbon (Cu/C) catalyst that is bench stable, can be used an a wide array of solvents, is 

recyclable, and is easily isolated.26 This catalyst was synthesized via the literature 

procedure26, and another series of model reactions was completed (Table 3). A mixture of 

solvents was also used to try and increase the solubility of the materials. In this series of 

reactions, the “click” reaction that Mitchell17 reported was repeated (Run 2.1, Table 3).17 

Similar to all previous runs, no conclusive evidence was obtained that a “click” reaction 

occurred.  



www.manaraa.com

	   57	  

Table 3 

 

Given the lack of success using the TMS-propargyl-terminated P3HT, a propynyl 

terminated (Scheme 8) was then used to determine if the TMS- group was too sterically 

hindering for  synthesis the 1,5-isomer catalyzed by ruthenium catalysts. At this time the 

reactions were then attempted in mixtures of THF and DMF, DMF and chloroform 

(CHCl3), and CHCl3 alone.  Also, the reaction was run at an elevated temperature to 

determine if any thermal cycloadditions would occur (Table 4). MALDI-TOF spectrum of 

these reactions again provided no evidence of a “click” reaction occurring. 

 

 

 

Scheme 8: Synthesis of propynyl-terminated P3HT 
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Meldal and Tornoe completed an intensive review of a wide array of “click” 

reaction conditions.6 Analysis of what reaction conditions would be favorable with this 

system was completed and a wide array of catalysts were selected and used, as seen in 

Tables 5 and 6.  	  

Table 4 

 

 

Table 5 
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Table 6 

 

 

 Once again, work up of these reactions and their resulting MALDI-TOF spectra 

proved that no “click” reactions were observed.  Benzyl azide was synthesized again and 

distilled via Kugelrhor to insure its purity. Reactions shown in Tables 7 and 8 were then 

attempted. Run 7.1 was completed near neat conditions, adding only enough solvent to 

dissolve the P3HT.  

Table 7 

	  

After these reactions failed again, a more thorough search of the literature was 

completed. Mechanistic studies completed previously found that the reaction rates of 

“click” reactions using polyvalent structures as ligand were unusually high. However, it 

was found that 1,2,3-triazoles had not been utilized in any ligand. Sharpless developed a 
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trivalent ligand, tris[1-benzyl-1H-1,2,3-triazole-4-yl)methyl]amine (TBTA) (15), which is 

a strong stabilizing ligand for copper (I) , as it protects it from both oxidation and 

disproportionation, while increasing its catalytic activity.27 The synthesis of TBTA utilizes 

tetrakis(acetonitrile)copper(I) hexafluorophosphate, Cu(MeCN)4PF6 as the copper 

catalyst. Additional sets of reactions were set up—one using previous combinations of 

catalyst and ligand, and the second using TBTA. However, this time these reactions were 

set up in duplicate, using both the propargyl and the ethynyl-terminated P3HT to verify 

that the “click” reactions that failed previously with the propargyl system were also 

consistently not working with the ethynyl system. Also, the solvent was changed from 

THF to 1,4-dioxane ensure that evaporation would not be an issue while running the 

reaction at elevated temperatures (Table 9).  The reactions summarized in Tables 9 and 10 

using the TBTA ligand produced no successful “click” reactions. 

 

Scheme 9: Synthesis of TBTA27 
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Table 8 

 

 

Table 9 

 

 

Table 10 
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Table 11: Microwave Assisted “Click” Reactions 

 

 Microwave assisted “click” reactions were then attempted as multiple sources 

described the reaction as going to completion in a matter of minutes (Table 11).6 While 

initial results appeared promising, further work-up of the polymers resulted in nothing 

more than starting materials as seen by MALDI-TOF.  

3.3 Conclusion 

“Click” chemistry was viewed to be the ideal way to synthesize a rod-coil diblock 

copolymer containing polythiophene and polystyrene because of its versatile uses in other 

organic, biological, and materials syntheses. Initial synthesis of a polythiophene-b-

polystyrene diblock copolymer proved to be problematic because of the occurrence of the 

Glaser homocoupling between the ethynyl-terminated P3HTs. Changing the alkyne from 

an ethynyl group to a propargyl was hypothesized to reduce the effects of conjugation on 

the system and also reduce the probability of Glaser coupling from occurring. Through 

exhaustive studies using a wide array of catalysts (both copper and ruthenium), bases, 

solvents, temperatures, and reaction times, there was no 1,2,3-triazole formation from any 

of the attempted cycloadditions of an alkyne-terminated P3HT and an azide. Current work 

has now shifted to synthesizing a 2-alkyne-3-hexylthiophene as another model compound 

to determine if a “click” reaction is possible on a non-polymeric thiophene system.  
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3.4 Experimental Methods 

All reactions, when specified, were performed under purified nitrogen or argon, 

using oven-dried glassware.  Tetrahydrofuran (THF) was dried using an Innovative 

Technologies (Pleasant Valley, MO) purification system.  Anhydrous magnesium 

chloride, lithium wire, napththalene, Ni(dppp)Cl2, tert-butylmagnesium chloride, ethynyl 

magnesium bromide, N,N,N′,N′′,N′′-Pentamethyldiethylenetriamine, N,N-

diisopropylethylamine, triethylamine, 2,2′-dipyridyl, 4,4'-dinonyl-2,2'-bipyridine, sodium 

ascorbate, copper (I) bromide, copper (I) iodide, copper (I) chlroride, CuSO4, 

CuBr(PPh3)3, Cu(OAc2), RuCp(PPh3)Cl,  2,6-lutidine, trimethylsilyl azide were purchased 

from Sigma-Aldrich and used without further purification. Cu(MeCN)4PF6 and 

RuCp*(PPh3)Cl were purchased from STREM Chemical Co. and used without further 

purification. 3-Bromo-1-trimethylsilyl-1-propyne, and tripropargylamine were purchased 

from GFS Chemicals and used without further purification. Styrene was purchased from 

Sigma-Aldrich and purified by running through basic alumina to remove an inhibitor. 2,5-

dibromo-3-hexylthiophene was synthesized according to the literature procedures from 3-

hexylthiophene.28 Bromine-terminated polystyrene18, tributylphosphine-terminated 

polystyrene20, azide-terminated polystyrene29, 2-(2-azidoethoxy)ethylbromoisobutyrate19, 

benzyl azide30, azido ethanol31, methylbenzyl azide30,32, Cu/C catalyst26 and TBTA27 were 

all prepared according to literature procedures.  

Instrumentation.   

1H NMR spectra were recorded using a Varian 400 MHz instrument.  A MALDI-

TOF MS (Voyager-DE STR BioSpectrometry) workstation by Biosystems, Inc. was used 

to record spectra in the linear mode, where samples were irradiated under high vacuum 
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using a nitrogen laser (wavelength 337 nm, 2ns pulse).  The accelerating voltage was 20 

kV, and the grid voltage and low mass gate were 92.0% and 1000.0 Da., respectively. The 

matrix used for all samples was 2,2’: 5,2”-Terthiophene (Aldrich).  GPC measurements 

were carried out on a Viscotek GPC Max 280 separation module equipped with two 5µm 

I-gel columns connected in series (guard, HMW and LMW) with a variable λ absorbance 

UV detector, online viscometer, and refractive index detector.  Analyses were performed 

at 30 30 °C using THF as the eluent and the flow rate was 1.0µL/min.  Calibration was 

based on polystyrene standards obtained from Viscotek.  Microwave-assisted “click” 

reactions were carried out in a CEM Corporation Discover Manual Single Mode 

Microwave System.  

Synthesis of 3-magnesium-bromo-1-trimethylsilyl-1-propyne:  To a 25 mL Schlenk 

flask, 0.005 mol MgCl2, 0.00103 mol naphthalene, 6 mL of THF and 0.0105 mol Li wire 

were added.  The reaction mixture was stirred vigorously for 24 hours at room 

temperature.  After 24 hours the Grignard was taken up in a syringe and added dropwise 

to the polymerization reaction as described for the general method. 

Typical End-Capping Reaction28. In a three neck round bottom flask, 5 mmol 2,5-

dibromo-3-hexylthiophene was dissolved in 10mL THF and stirred under argon. 5 mmol  

tert-Butylmagnesium chloride was added via syringe and the mixture was stirred at room 

temperature for 2 hours.   The reaction mixture was then diluted to 50 mL with THF and 

Ni(dppp)Cl2 (1.75-2.25 mol%) was added.  The mixture was stirred for 10 minutes at 

room temperature, and the Grignard reagent (20-30 mole % of monomer) was added via 

syringe to the reaction mixture.  The mixture was stirred for an additional 2 minutes and 
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then poured into methanol to precipitate the polymer.  The polymer was filtered into a 

cellulose thimble and then washed by Soxhlet extraction with methanol, hexanes, and 

chloroform.  The polymer was isolated from the chloroform extraction.  

GPC:  Mn: 4429, PDI: 1.5; MALDI-MS:  m/z:  4429.02 [M+] (calcd: 4426.20, DP of 26, 

ethynyl/Br end groups); GPC: Mn: 8333 , PDI: 1.15  m/z: 5936.30 [M+] (calcd: 5937.01, 

DP of 44, propargyl/Br end groups); GPC: Mn: 8722, PDI: 1.09  m/z: 6010.63 [M+] 

(calcd: 6006.95, DP of 44, TMS-propargyl/Br end groups); GPC: Mn: 6860, PDI: 1.2  

m/z: 4611.07 [M+] (calc: 4607.11, DP of 35, propynyl/Br end groups) 

Synthesis of Low Molecular Weight Bromine Terminated Polystyrene [6]18:  To a 25 

mL Schlenk flask, 0.087 mol of purified styrene and 0.00087 mol of CuBr were added.  

Argon was bubbled through the mixture for 25 min.  0.435 mmol PMDETA was added 

and stirred for 15 min at room temperature. A solution of 0.698mmol methyl 2-

bromopropionate in 0.020mol purified styrene was added via syringe and the mixture was 

heated at 110 °C and stirred for 8 hours. The Schlenk flask was then opened to air and 15 

mL of THF was added.  The organics were then passed through a neutral alumina column 

and precipitated into 200 mL of methanol to give a white solid. The polymer was filtered 

into a cellulose thimble and then washed by Soxhlet extraction with methanol, and THF.  

The polymer was isolated from the THF extraction. GPC: Mn = 3200, PDI = 1.25 

Synthesis of High Molecular Weight Bromine Terminated Polystyrene [6]18:  To a 

100 mL Schlenk flask, 0.437 mol of purified styrene and 0.00219 mol of CuBr was added.  

Argon was bubbled through the mixture for 25 min. 0.00219 mol PMDETA was added 

and stirred for 15 min at room temperature.  A solution of 2.094 mmol methyl 2-
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bromopropionate in 0.040mol purified styrene was added via syringe and mixture was 

heated at 110 °C and stirred for 8 hours.  The solution became viscous and eventually 

solidified. The Schlenk flask was then opened to air and 45 mL of THF was added.  The 

organics were then passed through a neutral alumina column and precipitated into 500 mL 

of methanol. The polymer was filtered into a cellulose thimble and then washed by 

Soxhlet extraction with methanol, and THF.  The polymer was isolated from the THF 

extraction. GPC: Mn = 10500, PDI = 1.1 

Synthesis of Azide Terminated Polystyrene [7]19:  In a 50mL Schlenk flask, a solution 

of 0.44 mmol bromine terminated polystyrene in 10mL THF, 3.86 mmol 

azidotrimethylsilane and 4 mmol TBAF were added. The reaction mixture was stirred 

overnight at room temperatrue in an argon atmosphere. The resulting polymer was 

precipitated in 200 mL of methanol and was was filtered into a cellulose thimble and then 

washed by Soxhlet extraction with methanol, and THF.  The polymer was isolated from 

the THF extraction. GPC: Mn=10250, PDI 1.21 

Attempts at Alkyne Terminated P3HT Clicked with Various Azides:  To a 20 mL 

scintillation vial, 0.10 mmol of alkyne-terminated poly(3-hexylthiophene), 0.025 mmol 

catalyst, 0.040 mmol of base, 10 mL of solvent and 0.25 mmol of azide were added.  The 

vial was capped and stirred at specified temperatures for 5 days.  The reaction mixture 

was then diluted with THF and run through a mini-alumina column to filter out the 

catalyst and the polymer was isolated. 

MALDI-MS:  m/z:  4429.02 [M+] (calcd: 4426.20, DP of 26, ethynyl/Br end groups); 

m/z: 5936.30 [M+] (calcd: 5937.01, DP of 44, propargyl/Br end groups); m/z: 6010.63 
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[M+] (calcd: 6006.95, DP of 44, TMS-propargyl/Br end groups); m/z   4611.07 [M+] 

(calc: 4607.11, DP of 35, propynyl/Br end groups) 
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